New operating principle of potassium channels discovered
w operating principle of potassium channels discovered
Neurons conduct information by way of electrical impulses through our body. Potassium channels are a key component of this electrical circuit and are controlled either by an electrical impulse or through signaling molecules. In man, the dysfunction of the so-called HCN potassium channels is associated with neurological disorders such as epilepsy and depression. Prof. Henning Stahlberg?s team at the Biozentrum of the University of Basel has now elucidated the full structure of a bacterial counterpart of this type of potassium channel, which has provided new insights into its functioning.
New operating principle thanks to the 3D structure
Potassium channels are embedded in the membrane of cells. They form a pore with a filter that selectively allows the passage of potassium ions, and which is controlled by the signaling molecule cAMP. It was previously assumed that the pore could open and close, thus regulating the flow of potassium ions. Stahlberg?s team has now, however, found indications for another mode of action. Employing crystallization technology and electron microscopy, the scientists have reconstructed the intact three dimensional structure of the bacterial channel in its natural environment in both the presence and absence of cAMP.
Based on the analysis of these structures, they discovered, contrary to popular belief, that the pore always remains open. "When the signaling molecule cAMP docks onto the potassium channel, it causes a rearrangement and shift in the protein scaffold,? explains Julia Kowal, first author of this study. "We think that cAMP in fact widens the filter somewhat, thereby controlling the flow of potassium ions.? The newly uncovered structural details have made it possible for the researchers to consider the mode of functioning of these channels from a new perspective.
Mechanism relevant for new drugs
Stahlberg would like to investigate the filter region more closely with an extremely high resolution camera, in order to resolve the last remaining questions about this mechanism. These signal-driven potassium channels are also referred to as "pacemaker channels?. They help to generate the rhythm of the heart as well as the rhythmic excitability of neurons. The precise understanding of the mode of action is thus the basis for developing specific drugs for the treatment of epilepsy and cardiac arrhythmias.
Original Citation
Julia Kowal, Mohamed Chami, Paul Baumgartner, Marcel Arheit, Po-Lin Chiu, Martina Rangl, Simon Scheuring, Gunnar F. Schröder, Crina M. Nimigean, and Henning Stahlberg
Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.
Nature Communications, Published Online 28 January 2014
DOI: 10.1038/ncomms4106
Further Information
Prof. Henning Stahlberg, Biozentrum, University of Basel at the Department for Biosystems Science and Engineering (D-BSSE), Tel.: +41 61 387 32 62, E-mail:
henning.stahlberg@unibas.ch

(pressrelations) - nciple of potassium channels discovered
Neurons conduct information by way of electrical impulses through our body. Potassium channels are a key component of this electrical circuit and are controlled either by an electrical impulse or through signaling molecules. In man, the dysfunction of the so-called HCN potassium channels is associated with neurological disorders such as epilepsy and depression. Prof. Henning Stahlberg?s team at the Biozentrum of the University of Basel has now elucidated the full structure of a bacterial counterpart of this type of potassium channel, which has provided new insights into its functioning.
New operating principle thanks to the 3D structure
Potassium channels are embedded in the membrane of cells. They form a pore with a filter that selectively allows the passage of potassium ions, and which is controlled by the signaling molecule cAMP. It was previously assumed that the pore could open and close, thus regulating the flow of potassium ions. Stahlberg?s team has now, however, found indications for another mode of action. Employing crystallization technology and electron microscopy, the scientists have reconstructed the intact three dimensional structure of the bacterial channel in its natural environment in both the presence and absence of cAMP.
Based on the analysis of these structures, they discovered, contrary to popular belief, that the pore always remains open. "When the signaling molecule cAMP docks onto the potassium channel, it causes a rearrangement and shift in the protein scaffold,? explains Julia Kowal, first author of this study. "We think that cAMP in fact widens the filter somewhat, thereby controlling the flow of potassium ions.? The newly uncovered structural details have made it possible for the researchers to consider the mode of functioning of these channels from a new perspective.
Mechanism relevant for new drugs
Stahlberg would like to investigate the filter region more closely with an extremely high resolution camera, in order to resolve the last remaining questions about this mechanism. These signal-driven potassium channels are also referred to as "pacemaker channels?. They help to generate the rhythm of the heart as well as the rhythmic excitability of neurons. The precise understanding of the mode of action is thus the basis for developing specific drugs for the treatment of epilepsy and cardiac arrhythmias.
Original Citation
Julia Kowal, Mohamed Chami, Paul Baumgartner, Marcel Arheit, Po-Lin Chiu, Martina Rangl, Simon Scheuring, Gunnar F. Schröder, Crina M. Nimigean, and Henning Stahlberg
Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.
Nature Communications, Published Online 28 January 2014
DOI: 10.1038/ncomms4106
Further Information
Prof. Henning Stahlberg, Biozentrum, University of Basel at the Department for Biosystems Science and Engineering (D-BSSE), Tel.: +41 61 387 32 62, E-mail: henning.stahlberg(at)unibas.ch

Unternehmensinformation / Kurzprofil:PresseKontakt / Agentur:Prof. Henning Stahlberg, Biozentrum, University of Basel at the Department for Biosystems Science and Engineering (D-BSSE), Tel.: +41 61 387 32 62, E-mail: henning.stahlberg(at)unibas.ch
Bereitgestellt von Benutzer: pressrelations
Datum: 18.12.2014 - 19:15 Uhr
Sprache: Deutsch
News-ID 1152712
Anzahl Zeichen: 6653
pressrelations.de – ihr Partner für die Veröffentlichung von Pressemitteilungen und Presseterminen, Medienbeobachtung und MedienresonanzanalysenDiese Pressemitteilung wurde bisher
0 mal aufgerufen.
dern den digitalen Medienkonsum von Jugendlichen
Während Smartphones erst etwa ab 2007 den Markt zu erobern begannen, sind sie heute bei Jugendlichen allgegenwärtig. Dank WLAN-Internet und günstigen Flatrates verbringen Jugendliche mit Smartp ...
cess Emotions Differently
It is known that women often consider emotional events to be more emotionally stimulating than men do. Earlier studies have shown that emotions influence our memory: the more emotional a situation is, the more likely we a ...
verarbeiten Emotionen unterschiedlich
Bekannt ist, dass Frauen bewegende Ereignisse oft emotionaler bewerten als Männer. Ferner weiss man aus früheren Untersuchungen, dass Emotionen unsere Erinnerungen beeinflussen: Je emotionaler eine Situation ...